Hydrogen Isotope Research Center - Toyama Univ.


Data Base for Tritium Solid Breeding Materials (Li2O, Li2TiO3, Li2ZrO3 and Li4SiO4) of Fusion Reactor Blankets --- Yoshiaki FUTAMURA


6. Database for Li2ZrO3

6.5 Irradiation effects

6.5.1 Physical integrity

No. Data and remark Fig. Refs.
1 Very good - 12, 77

6.5.2 Swelling

No. Data and remark Fig. Refs.
1 Swelling : Less than 0.7%. - 12, 49, 77
2 Thermal expansion : No significant change. - 12, 73
3 Volumetric Swelling of Li2ZrO3 at 700°C. 6.4 49
4 Diameter Swelling of Li2ZrO3 at 500°C, 700°C, 900°C. 6.5 70

6.5.3 Grain growth

No. Data and remark Fig. Refs.
1 No change - 12, 36

6.5.4 Li transport

No. Data and remark Fig. Refs.
1 No change. Burn-up dependence of Li-transfer for Li2O, Li2ZrO3 and Li4SiO4. 4.28 12, 95, 56

6.5.5 Thermal conductivity

No. Data and remark Fig. Refs.
1 No significant change. - 12, 73
Notes1 Thermal conductivity κ= α·Cp·ρ (W/m-K)
    α : Thermal diffusivity (m2/s)
    Cp : Specific heat (J/g-K)
    ρ : Density (g/m3)
- -

6.5.6 Young's modulus

No. Data and remark Fig. Refs.
1 ~30% increase. - 12, 73

6.5.7 Tensile strength --- No data

6.5.8 Compressive strength

No. Data and remark Fig. Refs.
1 Significant decrease, not in agreement with bending strength behavior. - 12, 73

6.5.9 Bending strength

No. Data and remark Fig. Refs.
1 Scattered values available. - 12, 73

6.5.10 Tritium diffusivity

No. Data and remark Fig. Refs.
1 No single crystal data. - -
2 Diffusion Coefficient of Tritium in Oxide Ceramic Breeder Materials is shown in the following Appendix 6.5.10 - 42, 43, 44, 45
3 Summary of Tritium Diffusion Coef. in Li2ZrO3, Li2O and Li4SiO4. 6.6 18

Appendix 6.5.10 Diffusion Coefficient of Tritium in Oxide Ceramic Breeder Materials.6, 42, 43, 44, 45)

Material Neutron fluence
(cm-2)
LogD0
(cm2-s-1)
Q
(kJ-mol-1)
Temp. range
(K)
Li2O 8.1×1016 –4.1±0.5 77.4±5.6 570~690
Li2ZrO3 2.5×1016 –4.9±0.2 75.0±2.2 540~730
Li4SiO4 2.5×1016 –6.7±0.1 43.8±0.9 530~850

6.5.11 Tritium residence time (hr)

No. Data and remark Fig. Refs.
1 τ=1.089×10-19exp(230.5 kJ·mol-1/RT), (hr)
T≧58 K, 0.5≦dg≦1μm, 20≦p≦25%, He+0.1% He purge
- 12, 47, 50, 36
2 Tritium Residence Times for Li2ZrO3. 6.7 12

6.5.12 Tritium release

No. Data and remark Fig. Refs.
1 Isothermal tritium release at 300°C, 250°C, 200°C, in He+0.1% H2 purge gas, flow rate 2.4h-1 for Li2ZrO3. 6.8 50, 51
2 Tritium desorption curves for Li2TiO3 and Li2ZrO3 pebbles at a linear heating rate of 2 K/min, pure He sweep gas. 6.9 27
3 Tritium adsorption : No data - 12

6.5.13 Tritium retention

No. Data and remark Fig. Refs.
1 Tritium retention in Li2ZrO3, Li2O and Li4SiO4 at 700°C. 6.10 49, 50, 48

6.5.14 Helium retention

No. Data and remark Fig. Refs.
1 Very low - -
2 Helium Retention in Li2ZrO3, Li2O and Li4SiO4 after irradiation. 6.11
6.12
48

6.5.15 After heat (W/cm3)

No. Data and remark Fig. Refs.
1 6 W/cm3, 15 MW. yr/m2 fluence, 1-hr cooling, 85%TD
    no impurities : tritium retained in breeder
- 62, 65, 90
2 0.05 W/cm3, 12.5 MW. yr/m2 fluence, 1-hr cooling, 85%TD
    no impurities or tritium
- 62, 65, 91

6.5.16 Class C waste disposal rate

No. Data and remark Fig. Refs.
1 24%, at 15 MW. yr/m2 fluence, 10-yr cooling, 85%TD - 62, 90
Notes1 For the base case with no impurities, the U.S. Class C waste disposal rating for Li2TiO3 is roughly equal to that for Li2O and Li4SiO4, and more than 10 times lower than for Li2ZrO3. - 65

Index Previous Next