Hydrogen Isotope Research Center - Toyama Univ.


Data Base for Tritium Solid Breeding Materials (Li2O, Li2TiO3, Li2ZrO3 and Li4SiO4) of Fusion Reactor Blankets --- Yoshiaki FUTAMURA


7. Database for Li4SiO4 (αLi4SiO4)

7.5 Irradiation effects

7.5.1 Physical integrity

No. Data and remark Fig. Refs.
1 Poor at 500, 700, 900°C (< 3 at. % burn-up) - 23, 35

7.5.2 Swelling

No. Data and remark Fig. Refs.
1
ΔV/V0 : (%)
6Li burn- up 500°C 700°C 900°C
1 0.3 0.3 0.3
2 - 1.2 0.6
3 0.4 2.7 2.0
- 30
2 Volumetric Swelling of Li2ZrO3 at 700°C. 7.2 49
3 Diameter Swelling of Li2ZrO3 at 500°C, 700°C, 900°C. 7.3 70

7.5.3 Grain growth

No. Data and remark Fig. Refs.
1 None,           at ~1 atom % 6Li burn-up, for 500°C, 700°C
1→2μm,       at ~1 atom % 6Li burn-up at 900°C
- 36

7.5.4 Li transport

No. Data and remark Fig. Refs.
1 Burn-up dependence of Li-transfer for Li2O, Li2ZrO3 and Li4SiO4. 4.28 56

7.5.5 Thermal conductivity

No. Data and remark Fig. Refs.
1 No data (But it is given by thermal conductivity.) - -
Notes1 Thermal conductivity κ=α·Cp·ρ (W/m-K)
    α : Thermal diffusivity (m2/s)
    Cp : Specific heat (J/g-K)
    ρ : Density (g/m3)
- -

7.5.6 Young's modulus --- No data

7.5.7 Tensile strength --- No data

7.5.8 Compressive strength --- No data

7.5.9 Bending strength --- No data

7.5.10 Tritium diffusivity (cm2/s)

No. Data and remark Fig. Refs.
1 No single crystal data
D=1.37×10-7exp(–63 kJ/mol/RT)
Based on grain size of polycrystalline samples.
- 71
2 Diffusion Coefficient of Tritium in Oxide Ceramic Breeder Materials is shown in the following Appendix 7.5.10. - 42, 43, 44, 45
3 Summary of Tritium Diffusion Coef. in Li4SiO4, Li2O, Li2TiO3 and Li2ZrO3. 7.4 18

Appendix 7.5.10 Diffusion Coefficient of Tritium in Oxide Ceramic Breeder Materials.6, 42, 43, 44, 45)

Material Neutron fluence
(cm-2)
LogD0
(cm2-s-1)
Q
(kJ-mol-1)
Temp. range
(K)
Li2O 8.1×1016 –4.1±0.5 77.4±5.6 570~690
Li2ZrO3 2.5×1016 –4.9±0.2 75.0±2.2 540~730
Li4SiO4 2.5×1016 –6.7±0.1 43.8±0.9 530~850

7.5.11 Tritium residence time (hr)

No. Data and remark Fig. Refs.
1 τ=2.24×10-7exp(–63 kJ·mol-1/RT)
dg : ~20 μm, p : ~0.08, 560≦T≦770K, He+0.1 % He purge
- 12, 29
2 Tritium Residence Times for Li4SiO4. 7.5 12, 29

7.5.12 Tritium release

No. Data and remark Fig. Refs.
1 Refer to tritium retention and tritium residence time. - -

7.5.13 Tritium retention

No. Data and remark Fig. Refs.
1 Tritium retention in Li2ZrO3, Li2O and Li4SiO4 at 700°C. 6.10 49, 50, 48

7.5.14 Helium retention

No. Data and remark Fig. Refs.
1 At 1 atom % 6Li burn-up
T (°C) Retained/Generated (%)
500 0.7
700 0.6
900 0.06
- 48
2 Helium Retention in Li4SiO4 after irradiation. 7.6 48

7.5.15 After heat (W/cm3)

No. Data and remark Fig. Refs.
1 0.003 W/cm3, 15 MW. yr/m2 fluence, 1-hr cooling, 85%TD
    no impurities : tritium retained in breeder
- 62, 65, 90
2 0.0001 W/cm3, 12.5 MW. yr/m2 fluence, 1-hr cooling, 85%TD
    no impurities or tritium
- 62, 65, 91

7.5.16 Class C waste disposal rate

No. Data and remark Fig. Refs.
1 0.14%, at 15 MW. yr/m2 fluence, 10-yr cooling, 85%TD - 62, 90
Notes1 For the base case with no impurities, the U.S. Class C waste disposal rating for Li2TiO3 is roughly equal to that for Li2O and Li4SiO4, and more than 10 times lower than for Li2ZrO3. - 65

Index Previous Next