Figures of Chapter 4, Li₂O

Fig.4.1 Thermal conductivity data for porous Li_2O .

 $\begin{array}{ll} Fig. 4.3 & Linear thermal expansion strain \\ (referenced to 25 \) for Li_2O, Li_2ZrO_3, \\ Li_4SiO_4, Be \ and \ 316SS. {}^{10)} \end{array}$

Fig.4.2 Thermal conductivities for Li_2O , Li_2ZrO_3 , Li_4SiO_4 , Be and 316 SS. ⁷

Fig.4.4 Thermal expansion of single crystalLi₂O. 9)

Fig.4.5 Young's Modulus values for Li₂O, Li₄SiO₄, Be, PCA and HT9. $^{10) 6)}$

Fig.4.7 Calculated tensile failure strengths for 80% TD Li₂O, 80%TD Li₄SiO₄, Be, PCA and HT9. ¹⁶⁾

 $\label{eq:Fig.4.6} \begin{array}{l} Fig.4.6 \\ values for Li_2O, \ Li_2ZrO_3 \ and \ Li_4SiO_4. \ {}^{17)} \ {}^{6)} \ {}^{50)} \end{array}$

Fig.4.8 Calculated compressive failure strengths for 80% TD Li₂O, 80% TD Li₄SiO₄, Be, PCA and HT9. ¹⁶⁾

Fig.4.9 Porosity dependence of compressive strengths for Li₂O, Li₂ZrO₃ and Li₄SiO₄. ¹⁷⁾

Fig.4.11 Secondary thermal creep rate for Li_2O (80% TD, 10 μ m grain diameter) at 700 . PCA and HT9 curves shown for reference purposes. ¹⁶⁾

Fig.4.10 Bending failure strength for Li₂O (80% TD, 10 μ m grain diameter). PCA and HT9 tensile failure strengths shown for reference purposes. ¹¹

Fig.4.12 Secondary thermal creep rate for Li₂O (80% TD, 10 $\,\mu$ m grain diameter) at 800 $\,$. $^{16)}$

 $\begin{array}{ll} Fig. 4.13 & Compressive \ creep \ rates \ for \ Li_2O \ and \\ Li_4SiO_4 \ (80\% \ TD) \ (10MPa, \ 100h). \ {}^{6)} \end{array}$

Fig.4.14 Chemical reaction between Li_2O and Li_4SiO_4 and structure materials during reaction time normalized to 100hr. ²⁵⁾

Fig.4.16 Temperature dependency of hydrogen and heavy hydrogen absorption for Li₂O. ^{30) 31)}

Fig.4.19 Water vapor adsorption to Li₂O. ³²⁾

Fig.4.17 Hydrogen solubility in Li₂O. ³¹⁾

Fig.4.18 Hydrogen solubility limit and critical moisture pressure in Li₂O. ³⁹⁾

Fig.4.20 Tritium solubility in Li₂O crystal. ³³⁾

Fig.4.21 Hydrogen(), Tritium(), solubility in $Li_2O.\ ^{14)}$

Fig.4.23 Volumetric swelling of Li_2O, Li_2ZrO_3 and Li_4SiO_4 at 700 $\ . \ ^{(6)} \ ^{(49)}$

Fig.4.22 Relationship between burn up and swelling for Li_2O . ^(6) 30)

Fig.4.25 The grain size of irradiated Li₂O, Li₂ZrO₃ and Li₄SiO₄. The indicated grain size was determined by a linear intercept method, 100 full power days. (1% atom ⁶Li burn-up). ³⁶⁾

Fig.4.24 Diameter swelling of $Li_2O,\,Li_2ZrO_3$ and Li_4SiO_4 at 500 , 700 , 900 . $^{(6)}$ $^{70)}$

Fig.4.26 Relationship between weight loss of Li₂O and temperature. ³⁷⁾

 $\begin{array}{ll} Fig. 4.27 & Equilibrium \ constant \ for \ the \ reaction \\ Li_2O(s) + H_2O = 2LiOH(g). \ ^{37)} \end{array}$

Fig.4.29 Lattice diffusion coefficient for lightly irradiated Li₂O from Tanifuji(T), Quanci(Q) and Guggi(G). ⁴¹⁾

Fig.4.28 Burn up dependency of Li-transfer for Li₂O, Li₂ZrO₃ and Li₄SiO₄. ⁵⁶⁾

Fig.4.30 Lattice diffusion coefficient for Li_2O vs. fluence. $^{41)}$

Fig.4.31 Diffusion coefficient of T in Li_2O , Li_2ZrO_3 and Li_4SiO_4 . ³³⁾

Fig.4.32 Summary of tritium diffusion coefficient in Li_2O , Li_2ZrO_3 , Li_2TiO_3 and Li_4SiO_4 . ¹⁸⁾

Fig.4.33 Tritium residence times for Li₂O. 47)

Fig.4.34 Tritium retention in Li₂O. ⁴⁸⁾

Fig.4.35 Tritium retention in $Li_2O,\,Li_2ZrO_3$ and Li_4SiO_4 at 700 $\ .\ ^{49)}$

Fig.4.36 Helium retention in Li₂O. ⁴⁸⁾

Fig.4.37 Thermal diffusivity of $Li_2O,\,Li_2ZrO_3$ and Li_4SiO_4 (80% TD). $^{12)}$