Figures of Chapter 6, Li₂ZrO₃

Fig.6.1 Thermal conductivity of Li_2ZrO_3 , Li_2O and Li_4SiO_4 (80% TD). $^{17)}$

Fig.6.2 Porosity dependence of Young's Modulus values for Li₂ZrO₃, Li₂O and Li₄SiO₄. ^{50) 17) 6)}

Fig.6.3 Porosity dependence of compressive strengths for Li₂ZrO₃, Li₂O and Li₄SiO₄. ¹⁷⁾

Fig.6.4 Volumetric swelling of $Li_2ZrO_3,\,Li_2O$ and Li_4SiO_4 at 700 $\,$. $^{(49)}$

Fig.6.5 Diameter swelling of Li_2ZrO_3 , Li_2O and $Li_4SiO_4\ at\ 500$, 700 , 900 . $^{70)}$

Fig.6.6 Summary of tritium diffusion coefficient in Li₂ZrO₃, Li₂O and Li₄SiO₄. ¹⁸⁾

Tritium residence times for $Li_2ZrO_3.\ ^{12)}\ ^{47)}$ Fig.6.7 50)

Fig.6.9 Tritium desorption curves for Li₂ZrO₃ and Li2TiO3 at a linear heating rate of 2 K/min., pure He sweep gas. 27)

Fig.6.8 Isothermal tritium release at 300 $\,$, 250 $\,$, 200 $\,$ in He + 0.1%H_2 purge gas flow rate 2.4lh^1 for $Li_2ZrO_3.$ $^{50)\,51)}$

Fig.6.10 Tritium retention in $Li_2ZrO_3,\,Li_2O$ and Li_4SiO_4 at 700 $\ .\ ^{(9)}{}^{50)}$

Fig.6.11 Helium retention in Li₂ZrO₃. ⁴⁸⁾

Fig.6.12 Helium retention in Li_2ZrO_3 , Li_2O and Li_4SiO_4 after irradiation. ⁴⁸⁾

Fig.6.13 Thermal diffusivity of $Li_2ZrO_3,\,Li_2O$ and Li_4SiO_4 (80% TD). $^{12)}$