Deploying New Tritium D&D Technologies in the US--Recent Experience and Plans

S. Willms¹, E. Stallings¹, J. McFee², R. Blauvelt³, D. Krause⁴

¹Los Alamos National Laboratory, Los Alamos NM 87545, USA
²Shaw Environmental and Infrastructure, Inc., 7600 East Orchard Rd, Suite 320 S, Greenwood Village, CO 80111, USA
³WPI, Fairborn, OH 45324, USA
⁴BWXT of Ohio, Inc., Miamisburg, OH 45343, USA

I. Introduction

The US Department of Energy (DOE) Office of Environmental Management (EM) sponsors projects called Large-Scale Demonstration and Deployment Projects (LSDDP). These projects seek to identify and deploy technologies that will allow decontamination and decommissioning (D&D) of surplus facilities more quickly, at less cost and with reduced risk to personnel and the environment. Such a project was started centered on the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory (LANL) in 2001. TSTA is a tritium contaminated facility that is being shutdown. This LANL LSDDP is also performing deployments at other LANL facilities and at Mound, Princeton Plasma Physics Laboratory, Lawrence Livermore National Laboratory, the Savannah River Site and Lawrence Berkeley National Laboratory. The project encourages international participation and representative from the Joint European Torus are working with the project.

II. Areas of Interest

The LSDDP project is interested in a broad range of D&D technologies. These include:

- Waste handling and disposal—water oils and solids
- Tritium characterization—surface and bulk
- Dismantlement and demolition
- Personal protective equipment
- Gas detritiation
- Tritium air monitoring
- Decontamination of equipment and materials
- Surface stabilization (fixatives)
- Long-term surveillance and maintenance

III. Approach

The LSDDP employs a logical approach for the efficient deployment of technologies. The process begins by the identification of un-met needs at D&D facilities. A survey of field-ready technologies is made. Where technologies are found that match with un-met needs, a potential deployment is considered. This deployment is evaluated with respect to benefit, feasibility, and appropriateness. If approved, the deployment proceeds by the identification of a deployment engineering, the development of a test plan and acquisition of the technology. Then the technology is deploy, data is collected and a report written.

IV. Deployment Status

The LSDDP team has been formed and has completed an initial evaluation of facilities needs and available technologies. The results are summarized in Table 1. This shows that one or more technology that meet the LSDDP criteria has been identified in most of the categories of interest. The table lists each technology name and its application. The table also lists the major facilities where there is a potential deployment of the technologies. As shown, there is a large number of potential deployments.

V. Conclusions

The deployment of innovative technologies under an LSDDP format can be successfully executed as demonstrated by the progress made. The use of this thoughtfully develop LSDDP format, matching needs with technologies, combined with the knowledge and expertise acquired during the demonstration of these technologies, is leading to a large number of D&D technology deployments at multiple sites. It is expected that this will result in significant reductions in risk, cost, and schedule associated with D&D projects.

Table 1 Summary of LSDDP Technologies and Potential Deployment Facilities

Category	Technology Name	Application	LANL	SRS	PPPL	LLNL	Mound
Characterization							
	Lumi-Scint	Portable Scintillation counting	\checkmark	\checkmark	\checkmark		\checkmark
	TMS-2000	Direct reading surface tritium monitor	\checkmark				
	Hammer Drill	Concrete Characterization		\checkmark		\checkmark	\checkmark
Air Monitoring							
	Rad Elec, IncElectret	Passive air and surface tritium measurement	\checkmark	\checkmark	\checkmark	\checkmark	
Gas Detritiation							
	LLNL Tritium Clean-up "Cart"	Gaseous process effluent detritiation	\checkmark	\checkmark			
	Portable Tritiated Water Removal Unit	Rapid glovebox decontamination		\checkmark	\checkmark		
	DBATS	Glovebox decontamination	\checkmark			\checkmark	
Decontamination							
	Environmental Alternatives	Surface decontamination System	\checkmark		\checkmark		\checkmark
	Ozone decon	Surface decontamination			\checkmark		
	Bartlit Strip Coat TLC	Strippable coating	\checkmark		\checkmark		
Surface Stabilization							
	EKOR, PAG						\checkmark
Dismantlement and Removal							
	Burndy Hydraulic Crimper	Tubing crimper	\checkmark			\checkmark	\checkmark
	Evolution 180 Circular Saw	Metal demolition	\checkmark				\checkmark
	Adamant 2739 Circular Saw	Metal and wood demolition					
Waste Handling and Disposal (water, oils, solids)							
	Waterworks Crystals Superabsorbent Polymer	Water solidification					
	NOCHAR Petrobond®	Oil solidification	\checkmark	\checkmark			
	SAMMS	Heavy metal stabilization from liquids		\checkmark			
	WIC® (Waste Isolation Composite)	solidifying high activity tritium					
	Vial Crusher		\checkmark			\checkmark	
Other							
	Race Scan	Wireless communication	\checkmark	\checkmark			\checkmark