Hydrogen Isotope Research Center - Toyama Univ.


Data Base for Tritium Solid Breeding Materials (Li2O, Li2TiO3, Li2ZrO3 and Li4SiO4) of Fusion Reactor Blankets --- Yoshiaki FUTAMURA


5. Database for Li2TiO3(β)

5.5 Irradiation effects

5.5.1 Physical integrity

No. Data and remark Fig. Refs.
1 No data - 65, 53

5.5.2 Swelling

No. Data and remark Fig. Refs.
1 No data - 65, 53

5.5.3 Grain growth

No. Data and remark Fig. Refs.
1 No data - 65, 62

5.5.4 Li transport

No. Data and remark Fig. Refs.
1 No data - 65, 62

5.5.5 Thermal conductivity

No. Data and remark Fig. Refs.
1 Refer to tritium diffusivity. - 65, 62
Notes1 Thermal conductivity κ=α·Cp·ρ (W/m-K)
    α : Thermal diffusivity (m2/s)
    Cp : Specific heat (J/g-K)
    ρ : Density (g/m3)
- -

5.5.6 Young's modulus

No. Data and remark Fig. Refs.
1 No data - 65, 62

5.5.7 Tensile strength

No. Data and remark Fig. Refs.
1 No data - 65, 62

5.5.8 Compressive strength

No. Data and remark Fig. Refs.
1 No data - 65, 62

5.5.9 Bending strength

No. Data and remark Fig. Refs.
1 No data - 65, 62

5.5.10 Tritium diffusivity

No. Data and remark Fig. Refs.
1 ~10-9cm2/s, 600°C - 6
2 Summary of Tritium Diffusion Coefficient in Li2TiO3, Li2O, Li2ZrO3 and Li4SiO4. 5.5 18

5.5.11 Tritium residence time (hr)

No. Data and remark Fig. Refs.
1 Roughly similar to Li2ZrO3. - 65

5.5.12 Tritium release

No. Data and remark Fig. Refs.
1 Tritium release performance is excellent and is similar to Li2ZrO3. More than 80% tritium released within ~11 hr at 250°:C (see Fig.5.6). - 2, 50
2 Isothermal tritium release at 300°:C, 280°:C, 250°:C, 200°:C in He + 0.1% H2 purge gas, flowrate 2.4 l-hr-1 for Li2TiO3. Release rate increases rapidly in case of heating from 200°:C to 250°:C. 5.6 2, 50, 51
3 Effects of purge gas composition on tritium release from sample sintered at 1498K and heating rate of 2 K/min. 5.7 2, 67
4 Effect of sintered temperature on tritium release for a purge gas of pure helium and heating rate of 2K/min. 5.8 2, 67
5 Tritium desorption curves for Li2TiO3 and Li2ZrO3 at linear heating rate of 2 K/min, pure He sweep gas. 5.9 2, 67

5.5.13 Tritium retention

No. Data and remark Fig. Refs.
1 Refer to tritium release - -

5.5.14 Helium retention

No. Data and remark Fig. Refs.
1 Retained fraction (%), (1 K/min ramp rate)
Burn-up (at. %) 673K 773K 873K
0.007 78 10 4
- 51, 65

5.5.15 After heat (W/cm3)

No. Data and remark Fig. Refs.
1 0.17%, at 15 MW. yr/m2 fluence, 10-yr cooling, 85%TD - 62, 90
Notes1 For the base case with no impurities, the U.S. Class C waste disposal rating for Li2TiO3 is roughly equal to that for Li2O and Li4SiO4, and more than 10 times lower than for Li2ZrO3. - 65

No. Data and remark Fig. Refs.
1 0.05 W/cm3 at 15 MW. yr/m2 fluence, 1-hr cooling, 85% dense. No impurities : tritium retained in breeder. - 62, 65, 90
Notes1 For the base case with no impurities, the afterheat levels in Li2TiO3 are 20~50 times more than in Li2O and Li4SiO4, but 2~100 times lower than in Li2ZrO3. - 65

5.5.16 Class C waste disposal rate

5.6 Thermal properties of Ti2O doped Li2TiO3

5.6.1 Effect of Ti2O doping on thermal properties of Li2TiO3

No. Data and remark Fig. Refs.
1 Thermal conductivity of Ti2O doped Li2TiO3 with less than 5% mol. Ti2O powder is similar to that of Li2TiO3 without Ti2O doping. - -
2 Temperature dependence of thermal conductivity for Ti2O doped Li2TiO3. 5.10 93
Notes1 Thermal conductivity κ=α·Cp·ρ (W/m-K)
    α : Thermal diffusivity (m2/s)
    Cp : Specific heat (J/g-K)
    ρ : Density (g/m3)
- -

Index Previous Next