Hydrogen Isotope Research Center - Toyama Univ.


Data Base for Tritium Solid Breeding Materials (Li2O, Li2TiO3, Li2ZrO3 and Li4SiO4) of Fusion Reactor Blankets --- Yoshiaki FUTAMURA


9. List of Figures

Li2O

You can get figures (pdf-file). Fig. 4.1 ~ 4.37 (756 KB)

Fig.4.1
Thermal conductivity data for porous Li2O (80%TD).
Fig.4.2
Thermal conductivity for Li2O, Li2ZrO3, Li4SiO4, Be and 316SS.
Fig.4.3
Linear thermal expansion strain (referenced to 25°C) of Li2O, Li2ZrO3, Li4SiO4, Be and 316SS.
Fig.4.4
Thermal expansion of single crystal Li2O.
Fig.4.5
Young's Modulus values for Li2O, Li4SiO4, Be, PCA and HT9.
Fig.4.6
Porosity dependence of Young's Modulus values for Li2O, Li2ZrO3 and Li4SiO4.
Fig.4.7
Calculated tensile failure strengths for 80%TD Li2O, 80%TD Li4SiO4, PCA and HT9.
Fig.4.8
Calculated compressive failure strengths for 80%TD Li2O, 80%TD Li4SiO4, PCA and HT9.
Fig.4.9
Porosity dependence of compressive strengths for Li2O, Li2ZrO3 and Li4SiO4.
Fig.4.10
Bending failure strength for Li2O (80%TD, 10 μm-grain diameter). PCA and HT9 tensile failure strengths shown for reference purposes.
Fig.4.11
Secondary thermal creep rate for Li2O (80%TD, 10 μm-grain diameter) at 700°C. PCA and HT9 curves shown for reference purposes.
Fig.4.12
Secondary thermal creep rate for Li2O (80%TD, 10 μm-grain diameter) at 800°C.
Fig.4.13
Compressive Creep Rates for Li2O and Li4SiO4 (10 MPa, 100hr).
Fig.4.14
Chemical reaction between Li2O and Li4SiO4) and structure materials during reaction time normalized to 100hr.
Fig.4.15
Hydrogen solubility in Li2O at 10 Pa of H2 or H2O.
Fig.4.16
Temperature dependency of hydrogen and heavy hydrogen absorption for Li2O.
Fig.4.17
Hydrogen solubility in Li2O.
Fig.4.18
Hydrogen solubility limit and critical moisture pressure in Li2O.
Fig.4.19
Water vapor adsorption to Li2O.
Fig.4.20
Tritium solubility in Li2O Crystal.
Fig.4.21
Hydrogen(○) and Tritium(●) solubility in Li2O.
Fig.4.22
Relationship between burn-up and swelling for Li2O.
Fig.4.23
Volumetric swelling of Li2O, Li2ZrO3 and Li4SiO4 at 700°C.
Fig.4.24
Diameter swelling of Li2O, Li2ZrO3 and Li4SiO4 at 500°C, 700°C, 900°C.
Fig.4.25
The grain size of irradiated Li2O, Li2ZrO3 and Li4SiO4. The indicated grain size was determined by a linear intercept method, 100 full power days (1% atom 6Li burn-up).
Fig.4.26
Relationship between weight loss of Li2O and temperature.
Fig.4.27
Equilibrium constant for the reaction Li2O(s)+H2O=2LiOH(g).
Fig.4.28
Burn-up dependency of Li-transfer for Li2O, Li2ZrO3 and Li4SiO4.
Fig.4.29
Lattice diffusion coefficient for lightly irradiated Li2O from Tanifuji(T), Quanci(Q) and Guggi(G).
Fig.4.30
Lattice diffusion coefficient for Li2O vs. fluence.
Fig.4.31
Diffusion coefficient of T in Li2O, Li2ZrO3 and Li4SiO4.
Fig.4.32
Summary of tritium diffusion coef. in Li2O, Li2TiO3, Li2ZrO3 and Li4SiO4.
Fig.4.33
Tritium residence times for Li2O.
Fig.4.34
Tritium retention in Li2O.
Fig.4.35
Tritium retention in Li2O, Li2ZrO3 and Li4SiO4 at 700°C.
Fig.4.36
Helium retention in Li2O.
Fig.4.37
Thermal diffusivity of Li2O, Li2ZrO3 and Li4SiO4 (80%TD).

Li2TiO3

You can get figures (pdf-file). Fig. 5.1 ~ 5.10 (220 KB)

Fig.5.1
Thermal conductivity data for Li2TiO3.
Fig.5.2
Specific heat data for Li2TiO3.
Fig.5.3
Measured thermal diffusivity for 80%TD Li2TiO3. The values for each group are an overlay of two or three separate runs.
Fig.5.4
Thermal creep rate of Li2TiO3 at 600°C and 50 MPa.
Fig.5.5
Summary of tritium diffusion coef. in Li2TiO3, Li2O, Li2ZrO3 and Li4SiO4.
Fig.5.6
Isothermal tritium release at 300°C, 280°C, 250°C, 200°C, in He+0.1% H2 purge gas, flow rate 2.4 l-hr-1 for Li2TiO3.
Fig.5.7
Effect of purge gas composition on tritium release from sample sintered at 1498 K and heating rate of 2K/min. (Li2TiO3)
Fig.5.8
Effect of sintered temperature on tritium release for a purge gas of pure helium and heating rate of 2K/min. (Li2TiO3).
Fig.5.9
Tritium desorption curves for Li2ZrO3 and Li2TiO3 at a linear heating rate of 2K/min., pure He sweep gas.
Fig.5.10
Temperature dependency of thermal conductivity for TiO2-doped Li2TiO3 pellets.

Li2ZrO3

You can get figures (pdf-file). Fig. 6.1 ~ 6.13 (292 KB)

Fig.6.1
Thermal conductivity of Li2ZrO3, Li2O and Li4SiO4. (80%TD).
Fig.6.2
Porosity dependence of Young's Modulus values for Li2ZrO3, Li2O and Li4SiO4.
Fig.6.3
Porosity dependence of compressive strengths for Li2ZrO3, Li2O and Li4SiO4.
Fig.6.4
Volumetric swelling of Li2O, Li2ZrO3 and Li4SiO4 at 700°C.
Fig.6.5
Diameter swelling of Li2O, Li2ZrO3 and Li4SiO4 at 500°C, 700°C, 900°C.
Fig.6.6
Summary of tritium diffusion coef. in Li2ZrO3, Li2O and Li4SiO4.
Fig.6.7
Tritium residence times for Li2ZrO3.
Fig.6.8
Isothermal tritium release at 300°C, 250°C, 200°C, in He + 0.1% H2 purge gas flow rate 2.4 l-hr-1 for Li2ZrO3.
Fig.6.9
Tritium desorption curves for Li2ZrO3 and Li2TiO3 at a linear heating rate of 2K/min., pure He sweep gas.
Fig.6.10
Tritium retention in Li2O, Li2ZrO3 and Li4SiO4 at 700°C.
Fig.6.11
Helium retention in Li2ZrO3.
Fig.6.12
Helium retention in Li2ZrO3, Li2O and Li4SiO4 after irradiation.
Fig.6.13
Thermal diffusivity of Li2ZrO3, Li2O and Li4SiO4 (80%TD).

Li4SiO4

You can get figures (pdf-file). Fig. 7.1 ~ 7.7 (160 KB)

Fig.7.1
Porosity dependence of Young's Modulus values for Li4SiO4, Li2O and Li2ZrO3.
Fig.7.2
Volumetric swelling of Li4SiO4, Li2O and Li2ZrO3 at 700°C.
Fig.7.3
Diameter Swelling of Li4SiO4, Li2O and Li2ZrO3 at 500°C, 700°C, 900°C.
Fig.7.4
Summary of tritium diffusion coef. in Li4SiO4, Li2O, Li2ZrO3 and Li2ZrO3.
Fig.7.5
Tritium residence times for Li4SiO4.
Fig.7.6
Helium retention in Li2O, Li2ZrO3 and Li4SiO4 after irradiation.
Fig.7.7
Thermal diffusivity of Li4SiO4, Li2TiO3, Li2O and Li2ZrO3 (80%TD).

Index Previous Next